• 0 Posts
  • 278 Comments
Joined 2 years ago
cake
Cake day: June 12th, 2023

help-circle

  • The standard .NET C# compiler and CLI run on and build for Windows, MacOS, and Linux. You can run your ASP.NET webapps in a Linux docker container, or write console apps and run them on Linux, it doesn’t matter anymore. As a .NET dev I have literally no reason to ever touch Windows, unless I’m touching legacy code from before .NET Core or building a Windows-exclusive app using a Windows app framework.











  • No, it’s not a universal requirement nor is it particularly determined by the quality of your beans/grinder. Some very expensive grinders have anti-static mechanisms and better grinders typically have less static cling and retention. It’s also not so much about handling the grounds as it is about preventing small amounts of grounds from clinging to the inside of the grinder or your dosing cup.







  • Let f(x) = 1/((x-1)^(2)). Given an integer n, compute the nth derivative of f as f^((n))(x) = (-1)(n)(n+1)!/((x-1)(n+2)), which lets us write f as the Taylor series about x=0 whose nth coefficient is f^((n))(0)/n! = (-1)^(-2)(n+1)!/n! = n+1. We now compute the nth coefficient with a simple recursion. To show this process works, we make an inductive argument: the 0th coefficient is f(0) = 1, and the nth coefficient is (f(x) - (1 + 2x + 3x^(2) + … + nx(n-1)))/x(n) evaluated at x=0. Note that each coefficient appearing in the previous expression is an integer between 0 and n, so by inductive hypothesis we can represent it by incrementing 0 repeatedly. Unfortunately, the expression we’ve written isn’t well-defined at x=0 since we can’t divide by 0, but as we’d expect, the limit as x->0 is defined and equal to n+1 (exercise: prove this). To compute the limit, we can evaluate at a sufficiently small value of x and argue by monotonicity or squeezing that n+1 is the nearest integer. (exercise: determine an upper bound for |x| that makes this argument work and fill in the details). Finally, evaluate our expression at the appropriate value of x for each k from 1 to n, using each result to compute the next, until we are able to write each coefficient. Evaluate one more time and conclude by rounding to the value of n+1. This increments n.


  • I don’t think you need permission to send someone an email directly addressed to and written for them. I don’t have context for the claims about Kagi being disputed, but I’d be frustrated if someone posted a misinformed rant about my work and then refused to talk to me about it. I might even write an email. Doesn’t sound crazy. If there’s more to the “harassment” that I don’t know about, obviously I’m not in favor.