• 0 Posts
  • 13 Comments
Joined 2 years ago
cake
Cake day: June 15th, 2023

help-circle
  • No they are not “a tool like any other”. I do not understand how you could see going from drawing on a piece of paper to drawing much the same way on a screen as equivalent as to an auto complete function operated by typing words on one or two prompt boxes and adjusting a bunch of knobs.

    I don’t do this personally but I know of wildlife photographers who use AI to basically help visualize what type of photo they’re trying to take (so effectively using it to help with planning) and then go out and try and capture that photo. It’s very much a tool in that case.


  • Unfortunately proprietary professional software suites are still usually better than their FOSS counterparts. For instance Altium Designer vs KiCAD for ECAD, and Solidworks vs FreeCAD. That’s not to say the open source tools are bad. I use them myself all the time. But the proprietary tools usually are more robust (for instance, it is fairly easy to break models in FreeCAD if you aren’t careful) and have better workflows for creating really complex designs.

    I’ll also add that Lightroom is still better than Darktable and RawTherapee for me. Both of the open source options are still good, but Lightroom has better denoising in my experience. It also is better at supporting new cameras and lenses compared to the open source options.

    With time I’m sure the open source solutions will improve and catch up to the proprietary ones. KiCAD and FreeCAD are already good enough for my needs, but that may not have been true if I were working on very complex projects.



  • It appears like reasoning because the LLM is iterating over material that has been previously reasoned out. An LLM can’t reason through a problem that it hasn’t previously seen

    This also isn’t an accurate characterization IMO. LLMs and ML algorithms in general can generalize to unseen problems, even if they aren’t perfect at this; for instance, you’ll find that LLMs can produce commands to control robot locomotion, even on different robot types.

    “Reasoning” here is based on chains of thought, where they generate intermediate steps which then helps them produce more accurate results. You can fairly argue that this isn’t reasoning, but it’s not like it’s traversing a fixed knowledge graph or something.


  • All of the “AI” garbage that is getting jammed into everything is merely scaled up from what has been before. Scaling up is not advancement.

    I disagree. Scaling might seem trivial now, but the state-of-the-art architectures for NLP a decade ago (LSTMs) would not be able to scale to the degree that our current methods can. Designing new architectures to better perform on GPUs (such as Attention and Mamba) is a legitimate advancement. Furthermore, the viability of this level of scaling wasn’t really understood for a while until phenomenon like double descent (in which test error surprisingly goes down, rather than up, after increasing model complexity past a certain degree) were discovered.

    Furthermore, lots of advancements were necessary to train deep networks at all. Better optimizers like Adam instead of pure SGD, tricks like residual layers, batch normalization etc. were all necessary to allow scaling even small ConvNets up to work around issues such as vanishing gradients, covariate shift, etc. that tend to appear when naively training deep networks.


  • I agree that pickle works well for storing arbitrary metadata, but my main gripe is that it isn’t like there’s an exact standard for how the metadata should be formatted. For FITS, for example, there are keywords for metadata such as the row order, CFA matrices, etc. that all FITS processing and displaying programs need to follow to properly read the image. So to make working with multi-spectral data easier, it’d definitely be helpful to have a standard set of keywords and encoding format.

    It would be interesting to see if photo editing software will pick up multichannel JPEG. As of right now there are very few sources of multi-spectral imagery for consumers, so I’m not sure what the target use case would be though. The closest thing I can think of is narrowband imaging in astrophotography, but normally you process those in dedicated astronomy software (i.e. Siril, PixInsight), though you can also re-combine different wavelengths in traditional image editors.

    I’ll also add that HDF5 and Zarr are good options to store arrays in Python if standardized metadata isn’t a big deal. Both of them have the benefit of user-specified chunk sizes, so they work well for tasks like ML where you may have random accesses.


  • I guess part of the reason is to have a standardized method for multi and hyper spectral images, especially for storing things like metadata. Simply storing a numpy array may not be ideal if you don’t keep metadata on what is being stored and in what order (i.e. axis order, what channel corresponds to each frequency band, etc.). Plus it seems like they extend lossy compression to this modality which could be useful for some circumstances (though for scientific use you’d probably want lossless).

    If compression isn’t the concern, certainly other formats could work to store metadata in a standardized way. FITS, the image format used in astronomy, comes to mind.


  • I guess you’d measure whose GenAI models are performing the best on benchmarks (generally currently OpenAI, though top models from China are not crazy far behind), as well as metrics like number of publications at top venues (NeurIPS, ICML, and ICLR for ML, CVPR, ICC and ECCV for vision, etc.).

    A lot of great papers come out of Chinese institutions so I’m not sure who would be ahead in that metric either, though.




  • The main benefit I think is massive scalability. For instance, DOE scientists at Argonne National Laboratory are working on training a language model for scientific uses. This isn’t something you can do on even 10s of GPUs for a few hours, like is common for jobs run in university clusters and similar. They’re doing this by scaling up to use a large portion of ALCF Aurora, which is an Exascale supercomputer.

    Basically, for certain problems you either need both the ability to run jobs on lots of hardware and the ability to run them for long (but not too long to limit other labs’ work) periods of time. Big clusters like Aurora are helpful for that.


  • I work in CV and a lot of labs I’ve worked with use consumer cards for workstations. If you don’t need the full 40+GB of VRAM you save a ton of money compared to the datacenter or workstation cards. A 4090 is approximately $1600 compared to $5000+ for an equivalently performing L40 (though with half the VRAM, obviously). The x090 series cards may be overpriced for gaming but they’re actually excellent in terms of bang per buck in comparison to the alternatives for DL tasks.

    AI has certainly produced revenue streams. Don’t forget AI is not just generative AI. The computer vision in high end digital cameras is all deep learning based and gets people to buy the latest cameras, for an example.