I guess I’ve always been confused by the Many Worlds Interpretation of Quantum Physics and the fact that it’s taken seriously. Like is there any proof at all that universes outside of our own exist?

I admit that I might be dumb, but, how does one look at atoms and say “My God! There must be many worlds than just our one?”

I just never understood how Many Worlds Interpretation was valid, with my, admittedly limited understanding, it just seemed to be a wild guess no more strange than a lot things we consider too outlandish to humor.

  • madcaesar@lemmy.world
    link
    fedilink
    English
    arrow-up
    1
    ·
    18 days ago

    I’m trying to follow, how can an electron be a billion miles away? Aren’t the attractive forces keeping the atom together?

    • CummandoX@lemmy.world
      link
      fedilink
      English
      arrow-up
      8
      ·
      18 days ago

      In quantum physics the position of an electron is defined by a wave function. This wave function or rather it’s square modulus is the probability distribution of the position of the electron. In more simple terms, the electron doesn’t have a precise position but rather a high probability to be somewhere.

      One example of an electron being able to be billion miles away is the following: Think of a probability in the shape of a bell. Where the center of the bell has a value between 0 and 1 and to each side the function tends to 0. The likeliest region for the electron to be is the center of the bell, but since the function never takes the value 0, it is not impossible for the electron to be a billion miles away.

      If you apply a force to the electron, like an electrical field, you will simply shift and modulate the probability distribution moving the maximum probability towards the positive side of the electrical field. But the electron being in the place you expect it to be is still nothing but a very likely event. The event of the electron being a billion miles away is still of probability not 0.

    • palordrolap@fedia.io
      link
      fedilink
      arrow-up
      4
      ·
      18 days ago

      Draw a graph by flipping a coin. Start at (0,0). Assume a fair coin and fair flips. Move one unit right each time, but go up (+1) for heads and down (-1) for tails. The line drawn can go arbitrarily far vertically from 0, but the average vertical position necessarily remains 0.

      The average position of an electron is slightly more nebulous than the line x=0, and depends on what, if anything, the electron bound to, but for each state an electron can be in there is a group, or a locus, of possible positions that represent that bound state and the whole locus is a mean of sorts. An electron can go on a journey wherever as long as it continues to regress to that locus.

      And in the exceptionally rare instance where a subatomic particle goes on an indefinite journey, we call that quantum tunnelling.